导航菜单

成都的温度

成都的温度:动态变化的格式,你究竟该如何选择?
















成都的温度:重要观点的碰撞,难道不值得我们去思考?











成都的温度:关于未来的预测,这些可能性你思考过吗?












长治市潞州区、天津市红桥区、广西贺州市八步区、遂宁市船山区、襄阳市樊城区、潮州市湘桥区










  哈尔滨5月4日电 (徐鹏)哈尔滨工业大学5月4日发布消息,该校机电学院高海波教授团队在野外足式机器人环境认知学习与自主导航方面取得重要进展,相关成果可用于足式等复杂环境移动机器人的自主星球探测、野外救援等任务,并为物理智能系统提供典型案例。

  动物可通过对物理特征的理解去适应不断变化的地形环境,为足式机器人的环境认知学习提供仿生学启示。

足式机器人环境物理特征学习框架 哈工大提供

  然而,机器人实现类似的认知行为却面临诸多挑战。如何通过视觉和触觉信息实现对地形物理特征的有效表征?如何总结归纳机器人与环境的交互经验?如何解决由于地面环境动态变化造成的认知冲突?针对上述问题,研究团队提出足式机器人的环境物理特征类动物学习方法。

  研究人员以法向或切向足地作用力学模型为基础,设计了基于模型——数据的无监督学习框架。该研究首次提出具有认知冲突解决能力的增量式在线学习方法,使机器人能够通过视觉与触觉融合感知自主识别环境物理特征信息。

  具体而言,在地面表征方面,团队采用足地接触模型表征地形的触觉参数,让机器人“摸一摸”地面就知道柔软度和摩擦程度;另外,在机器视觉(“看一看”)方面,团队提出无监督视觉特征提取方法,无需人类参与,只需机器人自动对比视野中不同地形纹理,即可自主完成。

  为让机器人通过“看一看”就能预测地形“摸”起来的感受,团队将机器人实时采集的触觉、视觉特征聚类为知识群集,并通过映射网络将视觉特征和触觉特征联系起来。

  最后,团队开展了丰富的室内外感知和导航试验,证明该方法可有效助力机器人实现地面物理特征感知与预测,并在动态环境中学习和调整其认知模型,最终安全执行复杂的导航避障任务。

  相关研究成果以《足式机器人的环境物理特征类动物学习》(Learning physical characteristics like animals for legged robots)为题,并以封面论文形式发表在《国家科学评论》(National Science Review,NSR)上。(完)

【编辑:苏亦瑜】

最新评论:

头像
匿名网友
作为一个新手玩家,这篇攻略为我提供了很多有用的建议,特别是关于角色技能的搭配,感觉自己更有信心了!
1分钟前
头像
匿名网友
太实用的攻略了,建议加个关注!
5分钟前
头像
匿名网友
这篇攻略让我对游戏的理解又提升了一层,很多之前忽视的细节,经过作者的解释,变得非常有用,真是受益匪浅!
10分钟前
头像
匿名网友
攻略写得非常详细,内容实用,看完之后我直接去实践了,真的大大提高了我的游戏效率,感谢作者的无私分享!
15分钟前
头像
匿名网友
非常详细的攻略,内容涵盖了游戏的各个方面,特别是对装备的选择和技能搭配部分,非常实用!
30分钟前
二维码